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Abstract
Magnetization-versus-applied-field curves M(H) are calculated for an
[Fe(3.48 nm)/Gd(5.43 nm)]15 multilayer film using the Gd magnetization depth
profiles derived from the resonant x-ray magnetic scattering data collected
with an applied field of 2.4 kOe. Stable magnetic structures for other field
strengths are calculated by minimizing the sum of the Fe–Fe, Gd–Gd and
Gd–Fe exchange energies and the Zeeman energy in a temperature range of
140–240 K. The calculated curves fit very well the slowly rising M(H) curves
observed at temperatures between 140 and 200 K, where the Gd layers are
ferromagnetic, over a wide field range up to 50 kOe on adjusting a molecular-
field constant for the Fe–Gd interfaces, the only one free parameter used. The
concave magnetization depth profiles in the Gd layers are essential to reproduce
the observed M(H) curves. The discrepancies between the observed and
calculated curves in low-field regions represent the limitation of the single-
magnetic-domain model used in the calculation.

1. Introduction

The magnetic structure of Fe/Gd multilayers is the so-called aligned state or the twisted
state, depending on the strength of the in-plane applied field H and temperature T . In the
aligned state, the magnetic moments of the Fe and Gd layers line up with the applied field,
while they are canted from the field direction in the twisted state. This was first shown
by theoretical investigations, which enabled H–T phase diagrams to be calculated [1–3].
Experimental confirmations followed that used magnetization [4, 5] and magnetoresistance
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measurements [4,6], Mössbauer spectroscopy [7], neutron diffraction [8,9] and x-ray magnetic
circular dichroism (XMCD) [10–12]. The intriguing temperature and field behaviours of the
magnetic structure of Fe/Gd multilayers originate in the significantly different temperature
dependence of the Fe and Gd moments and are determined by a balance of the Zeeman energy
and the exchange energy.

In a previous paper [13], we used the resonant x-ray magnetic scattering (RXMS) technique
at a synchrotron source to determine the magnetic structures of an Fe/Gd multilayer in the
Fe-aligned state and the twisted state. The advantages of the RXMS over other techniques
reside in its element specificity and high momentum and real-space resolutions. By measuring
the specular reflectivity with x-rays of energies tuned close to the absorption edges of Fe
and Gd, we separately explored the magnetization depth profiles of the Fe and Gd layers
to subnanometre resolutions. The RXMS technique thus possesses the element specificity
of the XMCD technique and the spatial resolution of the neutron diffraction technique. We
successfully isolated the magnetic charge interference scattering from the dominant charge
(Thomson) scattering using the helicity flip technique with circularly polarized probing x-
rays. The difference reflectivity profiles measured with x-rays of + and − helicities were fitted
using the extended Parratt recursion formula to map the distributions of size and canting angle
of local Gd magnetizations across the 5.4 nm thick Gd layer at H = 2.4 kOe, T = 140–300 K.
To the best of our knowledge, this is the first high-resolution experimental determination of
the Gd magnetic structures.

In the present paper, we calculate magnetization-versus-applied-field curves M(H) from
the depth profiles of Gd magnetizations given in [13] and compare the results with the observed
M(H). If consistent fits are accomplished at various temperatures, the magnetization depth
profiles determined by the RXMS technique will acquire support and the technique will be
placed on a firm basis. Since the Gd magnetizations were given in relative units, we shall
first scale them into absolute units such as emu cm−3 or Bohr magnetons (µB) per atom, in
section 3.1. This will be followed by a description of the method that we used to calculate
M(H) curves in section 3.2. The results are compared with the measured curves in section 3.3
and a discussion will appear in section 4. We start with the sample preparation in section 2.

2. Sample preparation and chemical structure

The sample preparation and evaluation are described in [13]. We give a brief summary
here. Fe/Gd multilayer films were grown in an ultrahigh-vacuum deposition chamber
(3 × 10−7 Pa) equipped with electron-gun evaporators and a quartz thickness monitor. The
evaporation sources are iron and gadolinium metal ingots, which were deposited at rates of
1.2–1.8 nm min−1 on a Si(111) substrate at room temperature. A series of multilayers with
slightly different Fe and Gd layer thicknesses were grown to allow us to work out combinations
suited to x-ray scattering experiments. After trial runs, we selected a stacking structure of
Si substrate/[Gd(5.2 nm)/Fe(3.5 nm)]15/Si(3.5 nm). The capping Si layer is present to prevent
oxidation. Figure 1 shows a charge x-ray specular reflectivity profile recorded at a Cu Kα

source. Sharp superlattice Bragg peaks are observed up to the fourth order (qz = 2.82 nm−1),
demonstrating a high multilayer order in the sample. We point out that the number of observable
Bragg peaks is important, since it determines the depth resolution achievable in the magnetic
structure analysis. The charge reflectivity profile in figure 1 was fitted under the assumption
of chemically sharp (no interdiffusion), topographically wavy interfaces. A least-squares fit
simultaneously determined tFe = 3.48 ± 0.11 nm and ρ∗

Fe = 0.88 ± 0.05 for the thickness and
density of the Fe layers, respectively, tGd = 5.43±0.11 nm and ρ∗

Gd = 0.97±0.06 for those of
the Gd layers, respectively, and σFe−Gd = 0.81 ± 0.06 nm for the root mean square roughness
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Figure 1. The charge specular reflectivity profile for the [Fe(3.58 nm)/Gd(5.43 nm)]15 multilayer
sample observed with Cu Kα x-rays. The solid curve shows a fit.

of the Fe–Gd interfaces. The densities are relative to those for bulk bcc Fe and hcp Gd. These
values, used in the analysis of the RXMS data [13], will be employed in the calculation of
magnetization curves in this paper. The high-angle x-ray diffraction pattern indicated a clear
hcp Gd(0002) peak and a trace of bcc Fe(110) peak. We measured magnetization-versus-
applied-field curves M(H) using an Fe/Gd multilayer grown on a 12.5 µm thick Kapton film
in the same deposition run as the x-ray sample. The M(H) curves were recorded at T = 5–
300 K using a SQUID magnetometer (Quantum Design MPMS 5). Raw magnetization data are
sensitive to trace magnetic impurities in a substrate material, especially at low temperatures.
The SQUID signal of a Kapton substrate is smaller than that of a Si substrate. This explains
why we used the Fe/Gd sample grown on a Kapton film in magnetization measurements, in
place of the one grown on the Si substrate. The two samples have similar magnetic properties,
as discussed in [13].

3. Calculation of magnetization curves

3.1. Gd magnetization depth profile

In the previous paper [13], we determined S
‖
p and S⊥

p , Gd magnetizations of sublayer p (p =
1–20) parallel and perpendicular to the applied-field direction, for a [Fe(3.5 nm)/Gd(5.4 nm)]15

multilayer film placed in a magnetic field of 2.4 kOe. The RXMS technique gave S
‖
p and S⊥

p

at various temperatures on a common scale but hardly allowed their sizes to be evaluated
on an absolute scale. We calculated the mean parallel magnetizations 〈S‖

p〉 of the Gd layer
in the Fe-aligned state and compared them with the Gd magnetizations estimated from the
total magnetizations measured with a SQUID magnetometer. This yielded the relationship
MGd = 559.4〈S‖

p〉 (emu cm−3), where MGd is the Gd magnetization per unit volume of the Gd
layer [13].

Even though MGd = 559.4〈S‖
p〉 was derived using S

‖
p for the Fe-aligned state, this is

a universal scaling law applicable to S
‖
p and S⊥

p for the aligned and twisted states for all
temperatures. In this paper, we use this law to estimate the sizes of depth-dependent Gd
magnetization vectors µGd

p for the twisted state, as well as for the Fe-aligned state. Synthesizing

S
‖
p and S⊥

p shown in figure 8 of [13], we obtain µGd
p = 7.55 × 559.4

2056

√
(S

‖
p)2 + (S⊥

p )2 for the
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Figure 2. The depth profile of the magnitude of the Gd magnetization vector µGd
p synthesized

from observed 〈S‖
p〉 and 〈S⊥

p 〉 and placed on the absolute scale by combining the macroscopic
magnetization data.

magnitudes of local Gd magnetization vectors in units of the Bohr magneton (µB), where
2056 is the saturation magnetization of the Gd layer in emu cm−3 corrected for its density
(corresponding to 7.55 µB per atom). The results are plotted in figure 2 for six temperatures.
The profiles obtained are concave at all temperatures: large magnetizations are located at
the Fe interfaces (p = 1 and 20) and the core of the Gd layer (p ≈ 10) has vanishing or
small magnetizations. The interface magnetizations are virtually temperature independent
in the range 6.2–7.2 µB , which compares well with 7.55 µB , the full atomic moment of
Gd. Clearly, the large interface magnetizations are induced by the molecular field from the
adjacent Fe moments. In contrast, the magnetizations in the core of the Gd layer, µGd

core, show a
linear temperature dependence µGd

core ∝ (1 − T/TC) with TC = 214 K, indicating that the core
magnetizations are spontaneous, not induced by the Fe molecular field. The linear temperature
dependence of µGd

core shows that even for the core sublayer (p = 10), a standard molecular-field
theory does not describe the temperature dependence of the Gd magnetization. We pointed out
in [13] that the thin Gd layer has a Curie temperature much lower than bulk Gd (TC = 272 K).

3.2. Calculation of M(H) curves

On the basis of the molecular-field theory, Camley and co-workers [1–3] developed a formalism
minimizing the free energy, which is straightforward and valid at finite temperatures. It
includes, however, cumbersome calculations of self-consistent spin vector configurations
and the partition function Z at finite temperatures. We will adopt here a simpler formalism
developed by Motokawa and Dohnomae [14,15] that minimizes energy instead of free energy.
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Motokawa and Dohnomae considered the exchange energy and the Zeeman energy, but
neglected the entropy S in the free energy F = E−T S. Furthermore, their formalism assumes
fixed magnitudes of magnetic moments, resulting in only the orientations being variable
parameters. Results obtained by Motokawa and Dohnomae’s approach are therefore accurate
only at T = 0 K. Nevertheless, this approach has been proven to reproduce many features
observed in Fe/Gd multilayers at low and moderate temperatures. We modify Motokawa and
Dohnomae’s formula by explicitly considering the number of nearest-neighbour atoms in the
expression for the exchange energy [4]. Our calculation starts with the following formula:

E = −1

2

∑
i

1

zi

(ni−1,iAi−1,iMi−1 + ni,iAi,iMi + ni+1,iAi+1,iMi+1) · Miai

/ ∑
i

ai

−
∑

i

Mi · Hextai

/ ∑
i

ai . (1)

Magnetic energy E per unit volume is given by the sum of the exchange energy (the first term)
and the Zeeman energy (the second term). Mi is the magnetization (emu cm−3) of atom plane
i. nj,i is the number of atoms in plane j in the nearest-neighbour positions for an atom in
plane i, where j = i − 1, i or i + 1. zi = ni−1,i + ni,i + ni+1,i is the total nearest-neighbour
atom number for an atom in plane i. The symbol A stands for the molecular-field constant.
Aj,iMj is the molecular field (in Oe) acting on Mi from Mj . ai is the spacing of atom
plane i. Hext is an external field applied in the film plane. The summation in formula (1)
runs over all atom planes in one Fe/Gd bilayer. That is, we assume that the fifteen Fe/Gd
bilayers in our [Fe/Gd]15 multilayer have the same magnetic structure. Magnetization Mi is
expressed in terms of magnitude Mi and angle θi measured from the applied-field direction,
i.e. Mi = (Mi, θi). When the Mi are replaced by the known magnetizations, magnetic energy
E becomes a function of a set of angles θi . A stable magnetic structure may be found by setting
∂E/∂θi = 0 for all i. This leads to the following recursion formula:

1

2

(
ni+1,iai

zi

+
ni,i+1ai+1

zi+1

)
Ai,i+1MiMi+1 sin(θi+1 − θi)

= 1

2

(
ni,i−1ai−1

zi−1
+

ni−1,iai

zi

)
Ai−1,iMi−1Mi sin(θi − θi−1) + MiHextai sin θi . (2)

Equation (2) indicates that when two angles θi−1 and θi are given, θi+1 is calculated. Namely,
two initial angles determine all other angles. Following Motokawa and Dohnomae [14, 15],
we take for the initial angles the angle of an interface Fe magnetization, θFe

int , and that
of an interface Gd magnetization, θGd

int . We assume symmetric distributions of θFe
i and

θGd
i in each layer. Magnetization curves can be calculated in the following way. We arbitrarily

choose initial angles θFe
int and θGd

int and calculate all angles θi using equation (2). The magnetic
energy E(θFe

int , θ
Gd
int ) is then evaluated from formula (1). The angles θFe

int and θGd
int are slightly

varied, θFe
int → θFe

int + �θFe
int and θGd

int → θGd
int + �θGd

int , new θi are calculated and the energy
E(θFe

int + �θFe
int , θ

Gd
int + θGd

Int ) is evaluated. If E(θFe
int + �θFe

int , θ
Gd
int + �θGd

int ) < E(θFe
int , θ

Gd
int ), the

angles θFe
int +�θFe

int and θGd
int +�θGd

int are accepted as new initial angles. We repeat this procedure
until a minimal E(θFe

int , θ
Gd
int ) is obtained. Once the most stable magnetic structure is acquired

for a given applied-field strength Hext, the magnetization along the field direction is evaluated
according to

M(Hext) =
∑

i

Miai cos θi

/ ∑
i

ai . (3)

Repeating this procedure for various applied-field values produces a magnetization curve
M(Hext) for the set of Mi employed.
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Table 1. Parameter values used in the calculation.

A z ni±1,i ni,i a (nm)

Fe 7168 8 2 4 0.203
Gd 666 12 3 6 0.289

The x-ray diffraction pattern indicates a bcc (110) stacking for the Fe layer and a hcp
(0001) stacking for the Gd layer. It is a good approximation to assume a uniformly magnetized
Fe layer. All of the Mi in the Fe layer are then fixed at 1531 emu cm−3 (corresponding to
2.22 µB per atom), which includes ρ∗

Fe = 0.88, for all temperatures and applied-field strengths
Hext. For the Gd magnetization, we use the depth profiles given in figure 2 for all Hext,
sampled at the interplanar spacing of Gd(0001)5, ai = 0.289 nm. All Mi are now to hand,
which allows us to calculate M(Hext) for each temperature of figure 2. Table 1 lists the
parameter values we used. The molecular-field constants AFe,Fe and AGd,Gd were estimated
from A = 3kBTC/Ng2S(S + 1)µ2

B , where kB is the Boltzmann constant and TC the Curie
temperature. We used the bulk Curie temperatures for TC (1043 K for Fe and 292 K for Gd)
and took into account the deviations of atom number density N in the multilayer from the bulk
values. The g-factor is 2 and the spin S was taken to be gS = 2.22 for Fe and 7.55 for Gd.
The molecular-field constant at the Fe–Gd interface, AFe,Gd, is a free variable parameter in the
data fitting.

3.3. Comparison with experimental M(H)

Figure 3 compares the calculated M(H) curves with the observed magnetizations for T =
180 K. The solid and dotted curves show the M(H) calculated using AFe,Gd = −1000,
−800, −700, −600 and −400. The negative AFe,Gd-values indicate the antiferromagnetic
interaction between Fe and Gd. The M(H) curve for AFe,Gd = −700 fits very well the
observed magnetizations over a wide applied-field range up to 50 kOe. The small discrepancy
in the low-field region arises from the limitation of the single-magnetic-domain model. A
discussion is given on this point in a later section of this paper.

The molecular-field constant at the interface, AFe,Gd, is proportional to the exchange
coupling constant for Fe and Gd. Since the exchange coupling constant does not depend
on temperature, AFe,Gd = −700 must equally well explain the magnetizations observed at
temperatures other than 180 K. This is evidenced in figure 4. In fact, the calculated curves
agree well with the observations for T = 140, 160, 180 and 200 K. In contrast, the calculated
curve does not fit the data at T = 240 K. The failure is accounted for as follows. As indicated in
section 3.1, the Curie temperature at the core of the Gd layer is 214 K, which is much lower than
the bulk TC (292 K). The core of the Gd layer is paramagnetic at 240 K, as seen from the missing
spontaneous magnetization in figure 2. When the applied field becomes strong, non-negligible
magnetizations are induced in the paramagnetic Gd layer. On the other hand, our calculation
assumes constant magnetizations regardless of the applied-field strength. That is, each Gd
sublayer p holds a fixed magnitude of the magnetization mp(H) = mp(H = 0) + �mp(H)

with �mp(H) = 0. For paramagnetic Gd layers, we have mp(H = 0) = 0 and non-zero
field-dependent �mp(H). In this situation, our calculation should fail at T = 240 K. Note

5 We multiplied the depth profiles of figure 2 by factors of 1.00–1.15 to take account of the deviations of 〈µGd
p 〉

from the best-fitted straight line and the fractional atom-plane numbers given by tFe/aFe and tGd/aGd. We assumed
17 Fe(110) planes (αFe = 0.203 nm) and 19 Gd(0001) planes (aGd = 0.289 nm) in a unit Fe/Gd bilayer. Calculations
using 20 Gd planes, in accordance with the p-number in figure 2, with aGd = 0.272 nm, produced very similar M(H)

curves. We confirmed that the choice of ai for the Gd planes does not critically affect the calculation results.
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Figure 3. Observed (closed circles) and calculated (solid and dotted curves) magnetizations for the
Fe/Gd multilayer at 180 K. The applied-field direction is in the film plane. The interface molecular-
field constant AFe,Gd equals −400 (uppermost solid curve), −600, −700 (middle curve), −800 and
−1000 (bottom curve). The middle solid curve fits the data best.

that the good agreement of the calculated M(H) curves with the observed magnetizations is
accomplished for T = 140–200 K with only one variable parameter, AFe,Gd. This evidences
the reliability and consistency of the magnetic structures determined by the RXMS technique.
We point out that AFe,Gd = −700, providing good fits of the observed M(H) curves, is larger
in absolute value than AGd,Gd = 666 and much smaller than AFe,Fe = 7168 given in table 1.

4. Discussion

In the calculation of the M(H) curves, we made a few assumptions:

(1) all Fe sublayers have the bulk magnetic moment (2.22 µB) independent of temperature;
(2) at a given temperature, the magnitudes of both Fe and Gd sublayer magnetizations are

constant against variable applied-field strength; and
(3) both Fe and Gd magnetizations are fixed in the film plane.

As regards assumption 1, Takanashi et al estimated the Fe and Gd magnetic moments at 4.2 K
from the dependence on the multilayer period (λ) of the residual magnetization [4]. They
assumed that the Gd moment at 4.2 K was independent of λ and attributed the λ-dependent
residual magnetization to the varied Fe moment at 4.2 K. The estimated moment of their 3.7 nm
thick Fe layers is about 1.5 µB , which is very small compared with the value that we assumed
(2.22 µB). Our assumption is based on the 57Fe Mössbauer spectrum for our multilayer in the
zero field, that showed a hyperfine field of 320.8 ± 1.1 kOe at room temperature [13]. This is
very close to the bulk value (330 kOe). The 3.48 nm thick Fe layers in our [Fe/Gd]15 multilayer
are thus likely to have the bulk moment. Furthermore, the narrow widths of the Mössbauer
peaks exclude a wide distribution of the Fe moment. Assumption 1 is thus experimentally
supported.

The assumption of fixed magnetization magnitudes (assumption 2) is an acceptable one,
because the molecular field acting in ferromagnets is much stronger than the applied field used
in this study. For instance, in a Gd layer having a third of the saturation magnetization at
0 K, the molecular field is as high as 456 kOe (=666 × 2056/3). As all Gd atoms are always
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Figure 4. Observed (circle) and calculated (curve) magnetization curves for the Fe/Gd multilayer
at T = 140, 160, 180, 200 and 240 K. The calculated curves assume AFe,Gd = −700.

placed in such a high effective field, no practical change would take place in the size of the
Gd magnetization when the external-field strength varies from 0 to 50 kOe, i.e. �mp(H) = 0,
except at temperatures close to TC .

It is reported that amorphous Fe–Gd alloy films show a perpendicular magnetization [16].
However, we have some experimental evidence supporting assumption 3 for our sample. First
of all, the six lines in the Mössbauer spectrum observed from our [Fe/Gd]15 multilayer show the
3:4:1:1:4:3 intensity ratio. This indicates that the Fe moments are directed parallel to the film
plane. For further support, we compare the magnetization curves measured with applied fields
parallel and perpendicular to the film plane (figure 5). The magnetization measured with an in-
plane applied field, M(H‖), is always larger than that measured with a perpendicular applied
field, M(H⊥), for the same field strength (H‖ = H⊥). Furthermore, we note that below
160 K, the M(H‖) and M(H⊥) in figure 5 are related by M(H‖) ≈ M(H⊥ − 4πM(H⊥)).
This indicates that the demagnetization field accounts for the difference between M(H‖) and
M(H⊥). In other words, our Fe/Gd multilayer has no perpendicular magnetic anisotropy. We
conclude that both Fe and Gd magnetizations are in the film plane at all temperatures.

It is instructive to calculate the M(H) curves for a uniformly magnetized Gd layer and to
compare the results with the observation. The comparison will highlight the significance of
the concave-shaped magnetization depth profiles of figure 2. The solid curves in figure 6 show
the M(H) curves calculated for a uniform Gd magnetization of 2.89 µB , equivalent to the
mean of the concave profile for T = 180 K in figure 2. The solid curves, weakly depending
upon the molecular-field constant AFe,Gd, show more rapid rises than the M(H) curve for the
concave magnetization, shown by a broken line (AFe,Gd = −700). It is probably impossible
to fit the observed magnetizations (closed circles) by a uniform-magnetization model as long
as AFe,Gd is the only variable parameter.
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Figure 5. Comparing the magnetization curves measured with in-plane (solid curves) and
perpendicular (broken curves) applied fields at various temperatures.

Figure 6. Comparing the magnetization curves calculated from the uniform model (solid curves)
and the concave model (dotted curve) of the Gd magnetization depth profile. The dotted curve
assumes AFe,Gd = −700. Closed circles show the magnetizations observed at 180 K.

The cause of the unsuccessful fitting by the uniform-magnetization model becomes clear
when we look into the rotation behaviour of local Gd moments. Figure 7 shows the magnitudes
and orientations of local Fe and Gd moments calculated from the concave Gd magnetization
profile for T = 180 K. The long Gd magnetization vectors are located close to the Fe interface,
while the short vectors are in the core of the Gd layer. Figure 7(a) shows the magnetic structure
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Figure 7. In-plane orientations of local Fe and Gd magnetic moments calculated for T = 180 K.
(a) Applied field H = 3 kOe, (b) H = 30 kOe. The arrow length is proportional to the moment
size. The long Gd vectors represent the Gd magnetizations at the Fe interfaces, while the short
arrows represent those in the core of the Gd layer. The Fe vectors are shown on a doubled scale.
The applied field H is directed from left to right.

somewhat after the Fe-aligned → twisted transition (H = 3 kOe), while the configuration for
a higher field (H = 30 kOe) is shown in figure 7(b). The Gd vectors change their orientations
remarkably as the applied field increases (H = 3 → 30 kOe), except for the interface moments
that are virtually pinned down by the antiferromagnetic exchange interaction with the Fe
moments. The interior Gd moments, located away from the interface, are more free to rotate
towards the applied-field direction to reduce the Zeeman energy. The Fe magnetization vectors
do not rotate much and stay in a narrow angle range even when the external field is increased
up to 30 kOe. This is because of the large AFe,Fe constant (see table 1). A small angle made
by the adjacent Fe moments suffices to produce a large increase in the Fe–Fe exchange energy.
These observations indicate that the increase of observed magnetization M with increased
external field H is almost entirely accounted for by the rotating Gd moments. Note that the
interface Gd magnetizations have negative components along the field direction, whereas those
in deep sublayers make positive contributions to M as H increases at 180 K. If we replace the
concave magnetization depth profile with a uniform one of equal mean strength, the interface
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Figure 8. Gd magnetization depth profiles derived from the x-ray scattering data (left panels) and
the energy calculation (right panels). (a) Parallel component, (b) perpendicular component. Top
panels for T = 160 K and bottom panels for T = 140 K.

Figure 9. Observed and calculated angles θp between the Gd sublayer moment and the applied-field
direction at T = 140 K.

Gd vectors become smaller in length and the interior Gd vectors become larger. This leads to
a more rapidly rising M(H) curve for an Fe/Gd multilayer with a uniformly magnetized Gd
layer.

The Gd magnetizations of interior sublayers are not significantly affected by the Fe–Gd
exchange interaction at the interface. This explains the weak AFe,Gd-dependence of the M(H)

curves calculated for the uniform-magnetization model (see figure 6), in which a larger fraction
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of the total magnetization is located away from the interface than in the concave magnetization
model. The argument up to this point indicates that the concave magnetization depth profile
in the Gd layer is crucial for reproducing the slowly rising M(H) curves. We stress that a
standard molecular-field theory does not allow the concave magnetization depth profile to be
calculated, or its temperature dependence. This suggests that the M(H) and M(T ) curves
cannot be reproduced unless the Gd magnetization depth profiles are known to be concave.
Indeed, the authors of [4] failed to reproduce the M(T ) curves, although their M(H) curves
are reasonably well fitted at 4.2 K.

It is worthwhile to calculate the parallel and perpendicular components of the Gd
magnetization, µ‖

p and µ⊥
p , from µGd

p of figure 2 using the θp giving the best-fit M(H) curves,
and to compare the results with those of figure 8 in [13]. Figure 8 of this paper does this at
T = 160 and 140 K. The calculated profiles are similar to the observed ones, with the distinctive
decay rates of the parallel and perpendicular magnetizations nicely reproduced. The calculated
profiles are slightly shifted upwards, however. That is, the calculated magnetizations make
larger angles to the reversed applied-field direction than the RXMS results. This is clearly seen
in figure 9 that shows the plots of θp, the angle formed by the magnetic moment of sublayer
p to the field direction, for T = 140 K. The disagreement regarding the θp-angles arises from
the deviation of the calculated critical field H ∗ for the aligned → twisted transition from the
one (Hinf ) estimated from the inflection point in the observed M(H) curves. H ∗-fields are
commonly smaller than Hinf -fields by about 1 kOe at all temperatures. Hence, if magnetization
profiles are compared at the same field strength near Hinf , the calculated magnetizations rotate
from the reversed applied-field direction by greater angles: the Fe/Gd multilayer is already in
a twisted state. The deviation of H ∗ from Hinf may originate from the oversimplified model
of the Gd magnetic structure. The observed M(H) curves show dM/dH > 0 below Hinf ,
while dM/dH = 0 in the model calculation. The fact that dM/dH > 0 indicates that in the
multilayer, there are Fe and Gd magnetizations non-collinear to the applied field even in the
aligned state. In order to properly calculate the magnetic structure of the Fe/Gd multilayer for
low applied fields, we have to consider magnetic domain structures. The analysis of the RXMS
data described in [13] and our fitting of the magnetization curves were carried out using a single-
domain model. We stress that the single-domain model is a good approximation for medium-
and high-field regions because the volume of energetically unfavourable domains becomes
smaller with increasing applied field. Considering the relative importance of multidomain
structures at low field strengths, we regard the observed and calculated magnetization profiles
in figure 8 as being in reasonable agreement.

In summary, it is rather surprising that the simple formulae (1) and (2) combined with
the experimentally determined Gd magnetization depth profiles fit the magnetization curves
M(H) so well over the wide applied-field range. The less successful fits in the low-field region
represent the limitation of the single-magnetic-domain model. The reasonable agreement of the
calculated M(H) curves with the observed ones is strong support for the concave magnetization
depth profiles in the Gd layer obtained from the RXMS measurements.
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